<
From version < 1.6 >
edited by AISOP Admin
on 2025/01/14 21:04
To version < 2.1 >
edited by AISOP Admin
on 2025/01/14 21:15
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -61,11 +61,12 @@
61 61  
62 62  It is time to endow the fragments with topics so that we can recognize students' paragraphs' topics. In AISOP, we have used the (commercial) [[prodigy>>https://prodi.gy/]] for this task in two steps which, both, iterate through all fragments to give them topics.
63 63  
64 -**The first step: top-level-labels:** This is the simple [["text classifier" recipe>>https://prodi.gy/docs/recipes#textcat]] of prodigy: we can invoke the following command for this: prodigy textcat.manual the-course-name ./fragments.jsonl ~-~-label labels-depth1.txt  which will offer a web-interface on which each fragment is annotated with the (top-level) label. This web-interface can be left running for several days.
64 +**The first step: top-level-labels:** This is the simple [["text classifier" recipe>>https://prodi.gy/docs/recipes#textcat]] of prodigy: we can invoke the following command for this: prodigy textcat.manual the-course-name-l1 ./fragments.jsonl ~-~-label labels-depth1.txt  which will offer a web-interface on which each fragment is annotated with the (top-level) label. This web-interface can be left running for several days.
65 +Then extract the content into a file: prodigy db-out the-course-name-l1 > the-course-name-dbout.jsonl
65 65  
66 -**The second step is the hierarchical annotation** [[custom recipe>>https://gitlab.com/aisop/aisop-nlp/-/tree/main/hierarchical_annotation?ref_type=heads]] (link to become public soon): The same fragments are now annotated with the top-level annotation and all their children. E.g. using the command xxx
67 +**The second step is the hierarchical annotation** [[custom recipe>>https://gitlab.com/aisop/aisop-nlp/-/tree/main/hierarchical_annotation?ref_type=heads]] (link to become public soon): The same fragments are now annotated with the top-level annotation and all their children. E.g. using the command python -m prodigy subcat_annotate_with_top2 the-course-name-l2 the-course-name-dbout.jsonl labels-all-depths.txt  -F ./subcat_annotate_with_top2.py .
67 67  
68 -The resulting data-set can be extracted out of prodigy using the db-out recipe, e.g. prodigy db-out the-course-name-l2 the-course-name-l2
69 +The resulting data-set can be extracted out of prodigy using the db-out recipe, e.g. prodigy db-out the-course-name-l2 the-course-name-l2-dbout or can be converted to a spaCy dataset for training e.g. using the command xxxxx (see [[here>>https://gitlab.com/aisop/aisop-nlp/-/tree/main/it3/fundamental-principles]])
69 69  
70 70  
71 71  ----
... ... @@ -74,19 +74,21 @@
74 74  
75 75  === 2.1 Train a Recognition Model ===
76 76  
77 -...
78 +See [[here>>https://gitlab.com/aisop/aisop-nlp/-/tree/main/it3/fundamental-principles]].
78 78  
79 79  === 2.2 Create a Pipeline ===
80 80  
81 -...
82 +... write down the configuration JSON of the pipeline, get inspired [[pipeline-medieninderlehre.json>>https://gitlab.com/aisop/aisop-webapp/-/blob/main/config/couchdb/pipeline-medieninderlehre.json?ref_type=heads]]
82 82  
83 83  === 2.3 Create a Seminar and Import Content ===
84 84  
85 85  ...
86 86  
88 +Create a seminar with the web-interface, associate the appropriate pipeline.
89 +
87 87  === 2.4 Interface with the composition platform ===
88 88  
89 -...
92 +See the Mahara authorization configuration.
90 90  
91 91  ----
92 92  

Need help?

If you need help with XWiki you can contact: