Changes for page The AISOP recipe
Last modified by Paul Libbrecht on 2025/06/15 23:32
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -61,11 +61,12 @@ 61 61 62 62 It is time to endow the fragments with topics so that we can recognize students' paragraphs' topics. In AISOP, we have used the (commercial) [[prodigy>>https://prodi.gy/]] for this task in two steps which, both, iterate through all fragments to give them topics. 63 63 64 -**The first step: top-level-labels:** This is the simple [["text classifier" recipe>>https://prodi.gy/docs/recipes#textcat]] of prodigy: we can invoke the following command for this: prodigy textcat.manual the-course-name ./fragments.jsonl ~-~-label labels-depth1.txt which will offer a web-interface on which each fragment is annotated with the (top-level) label. This web-interface can be left running for several days. 64 +**The first step: top-level-labels:** This is the simple [["text classifier" recipe>>https://prodi.gy/docs/recipes#textcat]] of prodigy: we can invoke the following command for this: prodigy textcat.manual the-course-name-l1 ./fragments.jsonl ~-~-label labels-depth1.txt which will offer a web-interface on which each fragment is annotated with the (top-level) label. This web-interface can be left running for several days. 65 +Then extract the content into a file: prodigy db-out the-course-name-l1 > the-course-name-dbout.jsonl 65 65 66 -**The second step is the hierarchical annotation** [[custom recipe>>https://gitlab.com/aisop/aisop-nlp/-/tree/main/hierarchical_annotation?ref_type=heads]] (link to become public soon): The same fragments are now annotated with the top-level annotation and all their children. E.g. using the command x xx67 +**The second step is the hierarchical annotation** [[custom recipe>>https://gitlab.com/aisop/aisop-nlp/-/tree/main/hierarchical_annotation?ref_type=heads]] (link to become public soon): The same fragments are now annotated with the top-level annotation and all their children. E.g. using the command python -m prodigy subcat_annotate_with_top2 the-course-name-l2 the-course-name-dbout.jsonl labels-all-depths.txt -F ./subcat_annotate_with_top2.py . 67 67 68 -The resulting data-set can be extracted out of prodigy using the db-out recipe, e.g. prodigy db-out the-course-name-l2 the-course-name-l2 69 +The resulting data-set can be extracted out of prodigy using the db-out recipe, e.g. prodigy db-out the-course-name-l2 the-course-name-l2-dbout or can be converted to a spaCy dataset for training e.g. using the command xxxxx (see [[here>>https://gitlab.com/aisop/aisop-nlp/-/tree/main/it3/fundamental-principles]]) 69 69 70 70 71 71 ---- ... ... @@ -74,19 +74,21 @@ 74 74 75 75 === 2.1 Train a Recognition Model === 76 76 77 -.. .78 +See [[here>>https://gitlab.com/aisop/aisop-nlp/-/tree/main/it3/fundamental-principles]]. 78 78 79 79 === 2.2 Create a Pipeline === 80 80 81 -... 82 +... write down the configuration JSON of the pipeline, get inspired [[pipeline-medieninderlehre.json>>https://gitlab.com/aisop/aisop-webapp/-/blob/main/config/couchdb/pipeline-medieninderlehre.json?ref_type=heads]] 82 82 83 83 === 2.3 Create a Seminar and Import Content === 84 84 85 85 ... 86 86 88 +Create a seminar with the web-interface, associate the appropriate pipeline. 89 + 87 87 === 2.4 Interface with the composition platform === 88 88 89 -. ..92 +See the Mahara authorization configuration. 90 90 91 91 ---- 92 92